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Abstract

Anisotropic elasticity has been an active research subject for the last thirty years due to its applications to

composite materials. There are essentially two formalisms for two-dimensional deformations of a general anisotropic
elastic material. The Lekhnitskii formalism [Lekhnitskii, S.G., 1950. Theory of Elasticity of an Anisotropic Elastic
Body. Gostekhizdat, Moscow (in Russian)] has been the favorite among the engineering community, while the

newer Stroh formalism is well-known in the material sciences, applied mathematics and physics community. The
Stroh formalism (Stroh, A.N., 1958. Dislocations and cracks in anisotropic elasticity. Phil. Mag. 3, 625±646.) is
mathematically elegant and technically powerful. It began to be noticed by the engineering community in recent
years, specially among the younger researchers. A comprehensive treatment of both formalisms and applications of

the theory have been presented in a book by Ting. Since the appearance of the book in 1996, there have been
several new developments in the theory and applications of anisotropic elasticity. We present here new results that
have appeared since 1996. Only linear anisotropic elasticity is considered here; for nonlinear elasticity, the reader is

referred to the book by Antman (Antman, S.S., 1995. Nonlinear Problems in Elasticity. Springer±Verlag, New
York). # 1999 Published by Elsevier Science Ltd. All rights reserved.

The Stroh formalism (Stroh, 1958) does not give the stress sij explicitly in a symmetric form. It does
not give an explicit expression for the strain in a compact form. Mantic and Paris (1997) have recently
derived the following explicit symmetric representation of stress,

s � Re
�
Bhf�0�z��q�=B2iBT

	
, �not for s33�, �1�

in which Re stands for the real part, q� is an arbitrary constant, f�(z�) is an arbitrary function of
z�=x1+p�x2, f '(z )=df(z )/dz, h�i (�=1, 2, 3) is a diagonal matrix and B is a 3 � 3 matrix that depends
on elastic constants only (Ting, 1996a). Eq. (1) does not apply to s33. An alternate derivation that is
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more elementary and transparent was presented by Ting (1998b), who also gave an explicit symmetric
representation of strain as

E �
�
Re
�
Ahf�0�z��q�=B2�iBT

	
K
�
: �2�

In the above, [*] stands for the symmetric part of the matrix, A is a 3 � 3 matrix that depends on
elastic constants only, and

K �
24 0 ÿ1 0
1 0 0
0 0 0

35: �3�

By choosing f '(z )=ÿ2i and q�/B2�=1, Eqs. (1) and (2) reduce to:

s � Refÿ2iBBTg � L

and

E � ÿ�Refÿ2iABTgK� � ÿ�SK�, �4�
where L and S are two of the three Barnett±Lothe tensors (Barnett and Lothe, 1973). Thus, Lij (except
L33) represent an admissible stress state. The strains Eij are related to Sij. One can also show (Ting,
1998b) that the component (LS)21 represents the strain energy density. The three Barnett±Lothe tensors
S, H and L appear frequently in the solutions to anisotropic elasticity.

The Stroh formalism reduces the problem to ®nding the eigenvalues p and the eigenvectors x of the
eigenrelation (Ingebrigtsen and Tonning, 1969; Barnett and Lothe, 1973; Chadwick and Smith, 1977),

Nx � px, �5�
where N is a 6 � 6 real matrix that depends on elastic constants only. The six eigenvalues consist of
three pairs of complex conjugates. If p1, p2 and p3 are the eigenvalues with a positive imaginary part, the
remaining three eigenvalues are the complex conjugates of p1, p2 and p3. Let x1, x2 and x3 be the
eigenvectors associated with p1, p2 and p3. The general solution for the displacement u and the stress
function f can be written in one equation as:

w � Refq1f1�z1�x1 � q2f2�z2�x2 � q3f3�z3�x3g, wT � �u,f�, �6�
where q1, q2 and q3 are arbitrary complex constants. There are three independent solutions. In the
degenerate case in which p1=p2$p3 and x1=x2 there are only two independent solutions. Eq. (6) is not
a general solution for the degenerate case. Isotropic elastic material is an example. Although the
degenerate case, p1=p2$p3, has been discussed (Ting and Hwu, 1988), a full investigation of all
degenerate cases has only been done recently. Depending on the number of repeated eigenvalues p and
the number of independent eigenvectors Eq. (5) has, the 6 � 6 matrix N can be classi®ed into six groups
as follows.

1. Simple N (the SP group). The matrix N is simple when it has three distinct eigenvalues p. The three
associated eigenvectors are independent of each other. Most anisotropic elastic materials belong to
this group.

2. Semisimple N (the SS group). The matrix N is semisimple when it has p1=p2$p3 and there exist
three independent eigenvectors. Examples can be found in Tanuma (1996) and Ting (1997a). Isotropic
elastic materials belong to this group for surface waves.
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3. Extraordinary semisimple N (the ES group). The matrix N is extraordinary semisimple when it has
p1=p2=p3 and there exist three independent eigenvectors. This group does not exist for surface waves
(Ting, 1997a). However, it exists for steady state motion such as a moving line dislocation. It also
exists for elastostatics if the strain energy is allowed to be positive semide®nite.

4. Degenerate N of the ®rst kind (the D1 group). The matrix N is degenerate of the ®rst kind when it
has p1=p2$p3 and there exist only two independent eigenvectors. Examples are given in Tanuma
(1996).

5. Degenerate N of the second kind (the D2 group). The matrix N is degenerate of the second kind when
it has p1=p2=p3 and there exist only two independent eigenvectors. Isotropic elastic materials belong
to this group in elastostatics. Other examples can be found in Ting (1994) and Tanuma (1996).

6. Extraordinary degenerate N (the ED group). The matrix N is extraordinary degenerate when it has
p1=p2=p3 and there exists only one independent eigenvector. That an ED group exists was proved in
Ting (1996b) for elastostatics and for surface waves.

The general solution Eq. (6) is valid for the SP, SS and ES groups. For the D1 and D2 groups for
which p1=p2, it is replaced by (Ting and Hwu, 1988):

w � q1x1f1�z1� � q2
d

dp1
fx1f2�z1�g � q3x3f3�z3�: �7�

For the ED group for which p1=p2=p3, Eq. (6) is replaced by (Wang and Ting, 1997):

w � q1x1f �z1� � q2
d

dp1
fx1f2�z1�g � q3

d 2

dp21
fx1f3�z1�g: �8�

Thus, the ED group is the most degenerate in the mathematical sense. Isotropic elastic material,
though the most degenerate in the physical sense, is not the most degenerate in the mathematical sense.
Classi®cations of the materials based on the form of the solution for surface waves were presented in
Ting and Barnett (1997). The classi®cations are important because the form of the solution depends on
which group the material belongs to.

The physical meaning of Eqs. (7) and (8) is not clear for elastostatics. For surface waves in the half-
space x2>0, the displacement decays in proportion to eÿlx 2 (l>0) for Eq. (6). For Eqs. (7) and (8), it
decays in proportion to x2eÿlx 2 and x2

2eÿlx 2 , respectively (Ting, 1997b). Therefore, the decay of
displacement is much slower for the ED group, followed by the D1 and D2 groups. How does a
material change its N from one group to the other if we change the elastic constants continuously? This
was studied in Ting (1998c).

The 6-vector x consists of two 3-vectors a and b. The original Stroh formalism (Eshelby et al., 1953)
computes the 3-vector a from an eigenrelation. The 3-vector b is then determined from a. The
Lekhnitskii formalism has no eigenrelation to speak of. As a result, it has been impossible to do the
classi®cations with the Lekhnitskii formalism. A hybrid formalism has been proposed in Ting (1999a)
that provides an eigenrelation for the 3-vector b (see also Yin, 1997; Barnett and Kirchner, 1997). The
vector a is then determined from b. Thus, the hybrid formalism is a dual to the Stroh formalism.
Application to the classi®cations of the 6 � 6 matrix N mentioned above shows that the hybrid
formalism is much simpler and transparent. The classi®cations can be done without computing the
eigenvalues p and the eigenvectors x, except for the SP and D1 groups for which the computation of p
may be necessary. It is shown that the eigenvalues p can be computed explicitly for the SS, D2 and ED
groups, and for certain materials in the D1 and SP groups. The explicit expression of the three Barnett±
Lothe tensors S, H and L, especially L and S, can also be computed easily with the hybrid formalism
(Ting, 1997c). It is clear that the hybrid formalism complements the Stroh formalism. For certain
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problems for which the Stroh formalism may be awkward and cumbersome to employ, the hybrid
formalism o�ers an alternative. A good example in which a problem was solved by the Stroh formalism
and by the hybrid formalism can be seen in Ting (1996c, 1999d). The simpli®cation with the use of the
hybrid formalism is striking.

The equivalence of the sextic equation in the Stroh formalism and the sextic equation in the
Lekhnitskii formalism has been taken for granted. Barnett and Kirchner (1997) have shown directly that
they are indeed equivalent. While the explicit expression of the sextic equation for the Lekhnitskii
formalism can be easily derived, derivation of the explicit expression of the sextic equation of Stroh
would be an unpleasant task as noted by Steeds (1973). Ting (1997c) presented an explicit expression of
Stroh's sextic equation by using a conversion formula derived from Jacobi's theorem (see also Barnett
and Chadwick, 1991). He converted the expression for sab0 (the reduced elastic compliances in the
Lekhnitskii's sextic equation) to an expression for Cab (the elastic sti�nesses in the Stroh formalism).
The conversion formula allows one to convert an expression for sab0 to that for Cab and vice versa. It
will have wide applications.

There appear to be renewed interests in the singularities in anisotropic elastic wedges and composites,
and in stress intensity factors. The fracture initiation in sharp notches was studied by Suwito et al.
(1998). The free-edge singularity was investigated by Lin and Sung (1998) and Berger et al. (1998), in
which the wedge angles in the two materials need not be p/2. On the problem of a crack terminating at
an interface, Chen (1997) considered a crack that is normal to the interface of an orthotropic bimaterial.
He showed that the stress intensity factor for mode I or II depends only on three composite elastic
parameters. A crack that terminates at an interface obliquely was studied by Poonsawat et al. (1998), in
which the interface can slide with friction. Chen and Hsu (1997) considered the di�cult problem of an
interfacial crack that is not a straight crack. It is a cusp, and is a generalization of the cusped crack in
isotropic bimaterial considered by Wu (1994). Homentcovschi and Dascalu (1999) studied the more
general case in which the crack is a lemon shape. The interfacial crack for which the displacement is
prescribed on one surface while the traction is prescribed on the other surface of the crack was studied
by Homulka and Keer (1995). On the subject of a curvilinear crack, Kattis (1999) studied a crack lying
along an elliptic interface separating two dissimilar anisotropic elastic materials. The problem of the
stress singularities at the apex of a wedge that consists of an arbitrary number of dissimilar anisotropic
elastic wedges was studied by Ting (1997d). With the use of the transfer matrix, the size of the
determinant that provides the stress singularities is independent of the number of the wedges. The
classical paradox of Levy and Carothers on the critical wedge angle of an isotropic elastic wedge subject
to a uniform traction or a concentrated couple was examined by Belov and Kirchner (1995) for a much
more general wedge. The wedge can consist of any number of di�erent anisotropic elastic wedges.
Moreover, the elastic constants can depend on the polar angle.

A cylindrically anisotropic elastic material is a special inhomogeneous anisotropic elastic material. The
stress±strain law for any material point is the same when it is referred to a cylindrical coordinate
system. Examples of cylindrically anisotropic materials are tree trunks, carbon ®bers (Christensen, 1994),
certain steel bars, and manufactured composites (Rosenthal and Asimow, 1971). Lekhnitskii (1968) was
the ®rst to observe that the stress at the axis of a circular rod of cylindrically monoclinic material can be
in®nite when the rod is subject to a uniform radial pressure. A comprehensive re-examination of the
Lekhnitskii problem for cylindrically orthotropic elastic material was given by Horgan and Baxter
(1996). Ting (1996c) has considered a general cylindrically anisotropic elastic material, and has shown
that the stress at the axis of the circular rod can also be in®nite under a torsion or a uniform extension
(see also Ting, 1999d). A general theory of cylindrically anisotropic radially inhomogeneous materials
was presented by Alshits and Kirchner (1999a, 1999b). A remarkable phenomenon appears when one
studies the stress singularities at the apex of a wedge of cylindrically anisotropic elastic material.
Consider, for example, a cylindrically orthotropic elastic material under anti-plane deformations. The
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stress singularity at the wedge apex depends on one material parameter g. For a given wedge angle 2a,
no matter how small, one can choose a g so that the stress at the wedge apex is in®nite (Ting, 1998a).
The wedge angle 2a can be any angle. It need not be larger than p, as is the case when the material is
homogeneously isotropic or anisotropic. In the special case of a crack (2a=2p ) there can be more than
one stress singularity, some of them are stronger than the square root singularity. On the other hand, if
g < 1/2, there is no stress singularity at the wedge apex for any wedge angle, including the special case
of a crack. The same remarkable nature prevails for the more complicated plane strain deformations
(Ting, 1999b). The potential applications are obvious. If one can manufacture a structural element such
that, at each wedge apex in the structure, the material is cylindrically orthotropic, the structure is
singularity-free under any external loading. It is a fail-safe material.

Another remarkable result is related to the pressuring of a sphere. Assuming that the material is
nonlinearly elastic but otherwise transversely isotropic with the radial direction being the axis of
symmetry, Antman and Negron-Marrero (1987) have shown that the stress at the center of the sphere is
in®nite when the applied pressure exceeds a critical value. The same remarkable result was obtained by
Ting (1999c) who assumed that the material is linear and anisotropic, but spherically uniform. It means
that the stress±strain law referred to a spherically coordinate system is the same for each material point.
The existence of the in®nite stress at the center of the sphere is independent of the applied pressure. It
depends only on one composite material parameter. What is more remarkable is that, even though the
deformation is radially symmetric, the material at any point need not be transversely isotropic. The
material can be triclinic, i.e., it need not possess a plane of symmetry.

The dependence of the solution on the number of elastic constants is of interest not only in theory,
but also in applications. The well-known Dundurs constants for isotropic elastic bimaterials have been
extended to monoclinic elastic bimaterials (Ting, 1995). The stress solution for plane strain deformations
depends on two generalized Dundurs constants and the Stroh eigenvalues p1 and p2 in the two materials.
An important result is that, for a two-phase composite for which the two materials are the same
anisotropic elastic material but oriented di�erently from each other, the generalized Dundurs constants
vanish. Other problems that involve the reduced dependence on elastic constants are discussed by
Cherkaev et al. (1992), Thorpe and Jasiuk (1992), Dundurs and Markensco� (1993), Yang and Ma
(1998) and Chen (1997), mentioned earlier.

Although the contact problems for special anisotropic elastic materials have been considered before
(see the chapter in this volume on Contact Mechanics by Barber and Ciavarella (1999)), the contact
problems for a general anisotropic elastic material were studied only recently. Fan and Hwu (1996)
studied the contact between a punch and a general anisotropic elastic half-plane. This is followed by a
sliding punch on the half-plane with or without friction (Hwu and Fan, 1998a), contact of two
dissimilar anisotropic elastic bodies (Hwu and Fan, 1998b), and a punch on a curvilinear hole boundary
(Fan and Hwu, 1998). They also observed the mathematical analogy between the interface crack and the
contact problems (Hwu and Fan, 1998c), two seemingly unrelated problems. On the subject of
mathematical analogy Chen and Lai (1997) and Chen (1998) established a correspondence between a
monoclinic piezoelectric material and a general anisotropic elastic material under two-dimensional
deformations.

The presence of cracks, holes and inclusions in anisotropic elastic material is an important problem in
applications. Most problems require a numerical solution such as using the Boundary Element Method
(Hwu, 1998; Mantic and Paris, 1998). The essential ingredient in the BEM is the Green's function. The
Green's functions for the in®nite space, the half-space, bimaterials, elliptic inclusions, and cracks for
anisotropic elastic materials and composites have all been obtained (see Ting, 1996a). New Green's
functions for anisotropic elastic materials are obtained for a strip (Chiu and Wu, 1998), a wedge (Wu,
1998) and for piezoelectric, piezomagnetic and magnetoelectric media (Kirchner and Alshits, 1996). The
success in obtaining these Green's functions is due to the powerful tool o�ered by the Stroh formalism.
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Another example that owes its success to the Stroh formalism is the proof of Nix's theorem. Consider
two line dislocations separated by a distance h but skewed with respect to each other by an angle. For
an in®nite anisotropic elastic medium, Orlov and Indenbom (1969) have shown that the net (integrated)
interaction force of one dislocation exerted on the other is independent of the separation distance h. Nix
(1997) computed numerically the net interaction force of one dislocation exerted on a skewed dislocation
in an isotropic elastic half-space with a traction-free surface. His numerical results show consistently
that the net interaction force is independent of h. Using the Stroh formalism, Barnett (1998) proved that
the separation independence part of Nix's theorem holds for a general anisotropic elastic half-space with
a traction-free surface. Further studies show that the separation independence remains valid for a
bimaterial that consists of two dissimilar anisotropic elastic materials bonded together (Barnett et al.,
1999) and for a half-space with a rigidly clamped surface or a slippery surface (Ting and Barnett, 1999).
An interesting result for the in®nite space is that the net interaction force vanishes if the Burgers vector
of one of the two skew dislocations is in the direction of the shortest distance between the two skew
dislocations. What is more amazing is that the net interaction force is independent of the presence of
inclusions, voids or cracks (Ting, 1999e). Nix's theorem also holds for graded materials (Kirchner,
1999).

While the Lekhnitskii formalism is not as convenient as the Stroh formalism for most problems, a
modi®ed Lekhnitskii formalism or a hybrid formalism (Ting, 1999a) which is mathematically a dual
to the Stroh formalism appears to have a great potential for the future research on anisotropic
elasticity. This is so because the computation of the Stroh eigenvectors x in Eq. (5), which are
needed in any solution, is much simpler by the hybrid formalism. The computation of the Barnett±
Lothe tensors L and S is also simpler. An open question is whether there is a hybrid formalism for
steady state motion such as surface waves in a general anisotropic elastic material. The solution for
surface waves again relies on the Stroh eigenvectors. If the hybrid formalism can reproduce the
Stroh eigenvectors for surface waves with simplicity, it would greatly bene®t the analysis of surface
waves.

There are other areas in anisotropic elasticity that remain to be explored. One is the problem of a
hole in an anisotropic elastic material that is not an ellipse. Several papers on a hole of non-elliptic
geometry have appeared in the literature but they are, mathematically, approximate solutions. The
exact analysis of a non-elliptic hole has eluded researchers so far. It is a challenging problem.
Another area is the three-dimensional problems. Some progress has been made in this direction. The
Green's function for the three-dimensional space of general anisotropic elastic material was given in
Ting and Lee (1997), in which the solution remains valid for the degenerate cases. The Green's
function for the in®nite space of transversely isotropic elastic material with the presence of body force
was studied by Hanson (1998). Also studied was the solution for concentrated ring load in a full
space or half-space of transversely isotropic material (Hanson and Wong, 1997). The Green's function
for transversely isotropic piezoelectric material was discussed in Dunn and Wienecke (1996) for the
in®nite space and in Dunn and Wienecke (1999) for the half-space. The problem of a three-
dimensional interfacial penny-shaped crack in anisotropic bimaterials was investigated by Qu and Xue
(1998). Depending on the elastic constants, the pathological behaviour of interpenetration of the crack
surfaces that exists in a two-dimensional crack may exist in a three-dimensional crack. Using the
Radon transform, Wu (1999) has reduced the three-dimensional ®eld equation to a two-dimensional
one for which the Stroh formalism can be employed. This provides an extension of the Stroh
formalism to three-dimensional problems of general anisotropic elastic materials. Like two-dimensional
anisotropic elasticity, the problems of three-dimensional anisotropic elasticity should be simpler than
the problems of three-dimensional isotropic elasticity because isotropic elastic material remains a
degenerate material in three-dimensional deformations. The ®eld of three-dimensional anisotropic
elasticity is, indeed, wide open.
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The references listed below are mostly for new results that appeared after 1996. References to
important works that appeared before 1996 can be found in Ting's book (Ting, 1996a).
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